The training of large generative AI models is a special case of high-performance computing (HPC) workloads. This is not simply due to the reliance on GPUs — numerous engineering and scientific research computations already use GPUs as standard. Neither is it about the power density or the liquid cooling of AI hardware, as large HPC systems are already extremely dense and use liquid cooling. Instead, what makes AI compute special is its runtime behavior: when training transformer-based models, large compute clusters can create step load-related power quality issues for power distribution systems in data center facilities. A previous Intelligence report offers an overview of the underlying hardware-software mechanisms (see Erratic power profiles of AI clusters: the root causes).
The scale of the power fluctuations makes this phenomenon unusual and problematic. The vast number of generic servers found in most data centers collectively produce a relatively steady electrical load — even if individual servers experience sudden changes in power usage, they are discordant. In contrast, the power use of compute nodes in AI training clusters moves in near unison.
Apply for a four-week evaluation of Uptime Intelligence; the leading source of research, insight and data-driven analysis focused on digital infrastructure.
Already have access? Log in here