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EMERGING TECHNOLOGY SERIES

This report is one of a series on emerging and potentially disruptive technologies that 
may be deployed in digital infrastructure. Here, Uptime Intelligence considers the use 
of neuromorphic computing to reduce the power demands of AI workloads radically.

EMERGING TECHNOLOGY: NEUROMORPHIC COMPUTING

Key innovation Neuromorphic computing could lead to the creation of smaller, faster, and 
orders of magnitude more power-efficient AI accelerators.

Potential impact 
(1 is low, 5 is high) 4 If the technology can be scaled and commercialized, it will change how 

most AI applications are developed and deployed.

State of maturity Deployments are mostly limited to research, academic and government 
organizations; commercial systems are becoming available.

Main drivers to 
deployment

New types of models could advance state-of-the-art AI capabilities.

More efficient hardware architectures could solve the challenges of 
powering and cooling AI infrastructure. 

Main barriers to 
deployment

Neuromorphic systems are yet to demonstrate a clear advantage over 
conventional systems.

It is challenging to program neuromorphic systems; there are few 
frameworks, tools and developer environments. 

Possible date range for  
wide deployment 2030-2040

Key innovators/  
companies involved

Chip developers: IBM, IMEC, Innatera, Intel, SpiNNcloud, SynSense,  
Zhejiang Lab.

Academic centers: CalTech, Heidelberg University, Technical University of 
Dresden, Stanford University, Zhejiang University.

Key companies or type 
of companies most 
affected (positively or 
negatively)

Emerging computing architectures will threaten some major chip designers 
and manufacturers; others will take advantage of them.

Power grids will regain stability as data center developers return to  
lower-density designs.
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Context
AI workloads are responsible for a large and rapidly growing share of data center 
power consumption, increasing the strain on grid operators that cannot build new 
capacity quickly enough. 

At the same time, the high power and cooling requirements of individual rack-scale 
GPU-based systems are forcing operators to make changes to established data center 
designs — increasing cost, complexity and risk.

Research into neuromorphic computing could lead to the creation of smaller, 
faster and orders of magnitude more power-efficient accelerators for AI, while 
simultaneously offering a solution to the end of traditional silicon scaling techniques. 
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The future of data centers for AI is expected to be dominated by gigawatt-scale 
facilities that deliver hundreds of kilowatts to each rack. Neuromorphic computing 
proposes an alternative — where AI workloads are run in small and efficient facilities 
filled with systems that consume less power than traditional enterprise IT. 

The technology
Neuromorphic computing is a relatively new research discipline, established in the 
late 1980s to design chips, systems and software that are based on the structure 
and operating principles of the human brain. These systems use silicon and software 
representations of artificial neurons and synapses to build spiking neural networks 
(SNNs) that abstract the characteristics of electrical signals in the brain into 
mathematical functions.

The human brain is an extremely capable, very efficient biological computer estimated to 
run on just 20 W of power. The goal of neuromorphic computing is not to fully replicate its 
functions, but to use what we know to create a practical computing system.

There are two broad approaches to neuromorphic systems: 

•	� Analogue-digital mixed-signal circuits. This is where physical neurons are 
implemented in silicon. 

•	� Digital circuits. This is where neurons are simulated in software using 
specialized chips with many conventional compute cores.

In both types of systems, the computing architecture differs from the Von Neumann 
design principles that mainstream computers follow — where a compute function is 
distinct from an operating memory that stores all data, including instructions (software 
code). In neuromorphic architecture, there is no such distinction. Arithmetic operations 
and data share the same circuits, and data is operated on in situ, much like how the 
organic brain works.

The architectural benefit of neuromorphic computing is the removal of data movement 
to and from the processor’s arithmetic units, and complex control logic that directs 
these flows. A Von Neumann machine, even if fully integrated on a single piece of 
silicon (die), moves data from memory arrays through control logic to arithmetic units 
for processing, then stores the results. Inevitably, these movements increase latencies 
and consume power. 

This so-called Von Neumann bottleneck adds inefficiencies and concomitant 
performance limitations — computing resources often stall during execution as data is 
missing. The complexities of modern microprocessors and GPUs are rooted in ongoing 
design efforts put into optimizing data flows to overcome the Von Neumann bottleneck. 
Much of the emphasis in creating super-dense supercomputing clusters to train the 
largest generative AI models is on providing the low-latency and extreme bandwidth 
needed to move data around.

Neuromorphic computing operates to a fundamentally different principle in which data 
is stored and can be manipulated at the same time. This architecture style lends itself 
to processing massively parallel data streams for pattern recognition, control and 
event response. Examples of potential applications are image recognition and analysis, 
industrial machine vision and robotic controls, autonomous vehicles, natural language 
processing and anomaly detection. 

For appropriate workloads, the efficiency gains promise to be two to three orders of 
magnitude, while performing at a tiny fraction of the energy of a Von Neumann machine.

Various chip technologies have been proposed to implement neurons in silicon, 
including transistors, memristors, spintronic memories and threshold switches.

Digital neuromorphic systems bypass many of the complexities of implementing physical 
neurons but are much larger and do not enjoy the full efficiency benefits of mixed-signal 
neuromorphic hardware. Notable examples of this approach are the SpiNNaker system 
at the University of Manchester, powered by one million CPU cores, and its successor, 
SpiNNaker 2 at the Technical University of Dresden, with five million cores.
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Implementations
Notable neuromorphic computing projects, listed in chronological order, are: 

•	� The EU’s Human Brain Project, launched in 2013, was a decade-long, €600 million 
($697 million) effort that resulted in the creation of two neuromorphic systems: 
SpiNNaker (digital) and BrainScaleS (mixed-signal).

•	� IBM’s TrueNorth, launched in 2014, simulated a million neurons and 256 million 
synapses — roughly equivalent to the brain of a bee. The hardware was used in 
experiments and applications by more than 40 organizations, including Lawrence 
Livermore National Laboratory (California, US) and Air Force Research Laboratory 
(New York State, US).

•	� The China Brain Project launched in 2016 with a 15-year funding plan and brain-
inspired AI technologies among core focus areas.

•	� Intel’s Loihi 2, released in 2021, implemented a million neurons and was 
accompanied by a software development framework called Lava. In 2024, Intel 
combined 1,152 chips in a 6U appliance for Sandia National Laboratories (New 
Mexico, US). It supported 1.15 billion neurons and 128 billion synapses (roughly 
equivalent to the brain of an owl) while consuming 2.6 kW.

•	� In 2022, Australian company BrainChip announced that it was taking orders for 
Akida AI processor PCIe boards, making it the world’s first commercially available, 
off-the-shelf neuromorphic processor. 

•	� In 2023, IBM released NorthPole — a chip that was inspired by the brain and 
negated the Von Neumann bottleneck, yet was designed to run conventional 
deep learning workloads, claiming 25 times improvement in energy efficiency of 
inference.

•	� In 2025, SpiNNcloud — the company that emerged from the development of 
SpiNNaker — announced a chip called SpiNNext. One of the first deployments 
is at Leipzig University (Germany), where it will be used to simulate 10.5 billion 
neurons. SpiNNcloud claimed that in some applications its architecture is 78 times 
more efficient in terms of tokens per watt than contemporary GPUs. 

•	� In 2025, the China Brain Project launched Darwin Monkey, a neuromorphic system 
powered by the homegrown Darwin 3 chips. It comprised a billion neurons 
and 100 billion synapses (roughly equivalent to the brain of a macaque) while 
consuming 2 kW. Demonstrations have included running DeepSeek models.

There are separate efforts to adopt the technology for low-power, on-device 
applications, including:

•	� BrainScaleS-2, developed at the Heidelberg University in Germany, features 512 
neurons, around 130,000 synapses, and consumes 1 W of power. Chips have been 
available to researchers using remote access since 2022.

•	� In 2025, Dutch firm Innatera launched Pulsar, calling it the world’s first 
commercially available neuromorphic microcontroller. The chip can process 
sensor data and run basic pattern recognition models at a power budget 
measured in microwatts.

Economics 
In 2025, much of the focus of neuromorphic research has shifted from discovering 
new compute paradigms to developing hardware platforms that can radically improve 
performance and decrease power consumption of existing deep learning-based AI 
applications, especially inference workloads. 

Hybrid servers equipped with both traditional and neuromorphic processors could 
make today’s AI models faster, cheaper and easier to deploy, before eventually 
replacing them with “native” neuromorphic models. The likely initial use cases include 
speech and image recognition, natural language processing and brain-machine 
interfaces.

Separately, neuromorphic chips are being considered for edge processing and robotics 
applications, bringing advanced AI functionality directly to devices and reducing the 
need for cloud services.
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All neuromorphic chips are currently used for prototyping and demonstration, with 
commercial applications years, or possibly decades, away. Yet, if some of the early 
claims are verified, neuromorphic computing could contest a sizeable (>20%) chunk of 
the compute segment of the semiconductor market, estimated at $800 billion for 2025. 

Commercial activity
Much of the funding for neuromorphic research comes from the public sector and is 
focused on universities. Some of the programs started in academia have resulted in 
ambitious commercialization efforts — the most notable being the Technical University 
of Dresden’s SpiNNcloud and Zhejiang University’s Zhejiang Lab.

These academic institutions are competing against the research organizations of 
giants Intel and IBM, but neither appears excited about the prospects of neuromorphic 
computing. IBM tests show that NorthPole, a prototype chip made using vintage 12 
nanometer fabrication processes, delivered much lower latency and higher efficiency in 
small language model inference than Nvidia’s H100. IBM has demonstrated a 2U server 
that contains four of these, and yet there are no plans to commercialize the system.

The dangers of being too early to the market were illustrated in 2025 by the failure 
of San Francisco-based Rain AI, a neuromorphic hardware startup backed by Sam 
Altman. Altman invested $25 million in a seed round in 2022, and OpenAI committed to 
buying $51 million worth of hardware. However, the hardware never materialized, as 
the startup failed to secure the $150 million it required to continue development. It is 
now exploring a sale.

Drivers and barriers 
Renewed interest in neuromorphic computing comes at a time when the power 
consumption of existing approaches to AI is becoming increasingly problematic. A 
more efficient alternative would be welcomed by broad swaths of the industry, from 
small-scale data center developers to grid operators, policymakers and the public.

If demonstrated to be superior, the technology poses a risk to investment 
commitments in conventional AI infrastructure. However, the commercial success of 
neuromorphic computing appears remote and uncertain.

To take full advantage of a new architecture, researchers will need to reinvent or 
redevelop existing AI capabilities, for example, teaching spiking neural network (SNN)-
based models how to recognize handwriting or speech while not relying on today’s 
artificial neural networks. New programming languages and software will be needed 
to operate neuromorphic hardware, and a sufficient pool of developers would need to 
be trained in their use.

The possibility of building systems with more neurons and synapses also depends 
on advances in nanotechnologies and materials science. Traditional computing 
architectures keep evolving rapidly to increase compute and data parallelism for AI 
training and inference workloads while suppressing power use, making “neuromorphic 
advantage” a fast-moving target.

Presently, the neuromorphic hardware and software market is diverse, with no clear 
leaders that could produce a framework that the rest of the growing industry segment 
could follow.

At the same time, examples show that neuromorphic systems are scaling very quickly: 
from millions of neurons a decade ago to billions of neurons today. Connecting these 
is relatively straightforward, and soon, researchers will be able to build machines that 
have as many neurons as the human cerebral cortex. It will be the software component 
that decides whether neuromorphic computing becomes a competitive alternative to 
the machine learning platforms of today.
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The Uptime Intelligence View
Much like the commercial challenge facing quantum computing systems, neuromorphic 
systems are available but limited to small user bases in universities or industrial 
research groups. Similarly, there is currently no compelling demonstration of a high-
volume application where neuromorphic hardware outperforms the alternative.

To take the next step in development, researchers must demonstrate a “neuromorphic 
advantage” in performance and power over conventional GPUs. Such applications 
appear to be close, and indeed, several vendors already claim performance and 
efficiency leadership in a narrow and carefully constructed set of tasks. 

Funding neuromorphic research carries little risk and could have transformative effects 
on many sectors. In the most optimistic commercialization scenario, this technology will 
change how most organizations approach IT — in a transition that will take many years.
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