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This report is one of a series on emerging and potentially disruptive technologies that
may be deployed in digital infrastructure. Here, Uptime Intelligence considers the use
of neuromorphic computing to reduce the power demands of Al workloads radically.

EMERGING TECHNOLOGY: NEUROMORPHIC COMPUTING

Key innovation Neuromorphic computing could lead to the creation of smaller, faster, and
orders of magnitude more power-efficient Al accelerators.

Potential impact If the technology can be scaled and commercialized, it will change how
(1is low, 5 is high) most Al applications are developed and deployed.

Deployments are mostly limited to research, academic and government

State of maturity organizations; commercial systems are becoming available.

Main drivers to New types of models could advance state-of-the-art Al capabilities.
deployment

More efficient hardware architectures could solve the challenges of
powering and cooling Al infrastructure.

Main barriers to Neuromorphic systems are yet to demonstrate a clear advantage over
deployment conventional systems.

Itis challenging to program neuromorphic systems; there are few
frameworks, tools and developer environments.

Possible date range for

wide deployment 2030-2040
Key innovators/ Chip developers: IBM, IMEC, Innatera, Intel, SpiNNcloud, SynSense,
companies involved Zhejiang Lab.

Academic centers: CalTech, Heidelberg University, Technical University of
Dresden, Stanford University, Zhejiang University.

Key companies or type  Emerging computing architectures will threaten some major chip designers

of companies most and manufacturers; others will take advantage of them.
affected (positively or : : : o
negatively) Power grids will regain stability as data center developers return to

lower-density designs.
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Context

Al workloads are responsible for a large and rapidly growing share of data center
power consumption, increasing the strain on grid operators that cannot build new
capacity quickly enough.

At the same time, the high power and cooling requirements of individual rack-scale
GPU-based systems are forcing operators to make changes to established data center
designs — increasing cost, complexity and risk.

Research into neuromorphic computing could lead to the creation of smaller,
faster and orders of magnitude more power-efficient accelerators for Al, while
simultaneously offering a solution to the end of traditional silicon scaling techniques.
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The future of data centers for Al is expected to be dominated by gigawatt-scale
facilities that deliver hundreds of kilowatts to each rack. Neuromorphic computing
proposes an alternative — where Al workloads are run in small and efficient facilities
filled with systems that consume less power than traditional enterprise IT.

The technology

Neuromorphic computing is a relatively new research discipline, established in the
late 1980s to design chips, systems and software that are based on the structure
and operating principles of the human brain. These systems use silicon and software
representations of artificial neurons and synapses to build spiking neural networks
(SNNs) that abstract the characteristics of electrical signals in the brain into
mathematical functions.

The human brain is an extremely capable, very efficient biological computer estimated to
run on just 20 W of power. The goal of neuromorphic computing is not to fully replicate its
functions, but to use what we know to create a practical computing system.

There are two broad approaches to neuromorphic systems:

< Analogue-digital mixed-signal circuits. This is where physical neurons are
implemented in silicon.

« Digital circuits. This is where neurons are simulated in software using
specialized chips with many conventional compute cores.

In both types of systems, the computing architecture differs from the Von Neumann
design principles that mainstream computers follow — where a compute function is
distinct from an operating memory that stores all data, including instructions (software
code). In neuromorphic architecture, there is no such distinction. Arithmetic operations
and data share the same circuits, and data is operated on in situ, much like how the
organic brain works.

The architectural benefit of neuromorphic computing is the removal of data movement
to and from the processor’s arithmetic units, and complex control logic that directs
these flows. A Von Neumann machine, even if fully integrated on a single piece of
silicon (die), moves data from memory arrays through control logic to arithmetic units
for processing, then stores the results. Inevitably, these movements increase latencies
and consume power.

This so-called Von Neumann bottleneck adds inefficiencies and concomitant
performance limitations — computing resources often stall during execution as data is
missing. The complexities of modern microprocessors and GPUs are rooted in ongoing
design efforts put into optimizing data flows to overcome the Von Neumann bottleneck.
Much of the emphasis in creating super-dense supercomputing clusters to train the
largest generative Al models is on providing the low-latency and extreme bandwidth
needed to move data around.

Neuromorphic computing operates to a fundamentally different principle in which data
is stored and can be manipulated at the same time. This architecture style lends itself
to processing massively parallel data streams for pattern recognition, control and
event response. Examples of potential applications are image recognition and analysis,
industrial machine vision and robotic controls, autonomous vehicles, natural language
processing and anomaly detection.

For appropriate workloads, the efficiency gains promise to be two to three orders of
magnitude, while performing at a tiny fraction of the energy of a Von Neumann machine.

Various chip technologies have been proposed to implement neurons in silicon,
including transistors, memristors, spintronic memories and threshold switches.

Digital neuromorphic systems bypass many of the complexities of implementing physical
neurons but are much larger and do not enjoy the full efficiency benefits of mixed-signal
neuromorphic hardware. Notable examples of this approach are the SpiNNaker system
at the University of Manchester, powered by one million CPU cores, and its successor,
SpiNNaker 2 at the Technical University of Dresden, with five million cores.



Implementations

Notable neuromorphic computing projects, listed in chronological order, are:

e The EU’'s Human Brain Project, launched in 2013, was a decade-long, €600 million
($697 million) effort that resulted in the creation of two neuromorphic systems:
SpiNNaker (digital) and BrainScaleS (mixed-signal).

¢ |IBM's TrueNorth, launched in 2014, simulated a million neurons and 256 million
synapses — roughly equivalent to the brain of a bee. The hardware was used in
experiments and applications by more than 40 organizations, including Lawrence
Livermore National Laboratory (California, US) and Air Force Research Laboratory
(New York State, US).

¢ The China Brain Project launched in 2016 with a 15-year funding plan and brain-
inspired Al technologies among core focus areas.

* Intel's Loihi 2, released in 2021, implemented a million neurons and was
accompanied by a software development framework called Lava. In 2024, Intel
combined 1,152 chips in a 6U appliance for Sandia National Laboratories (New
Mexico, US). It supported 1.15 billion neurons and 128 billion synapses (roughly
equivalent to the brain of an owl) while consuming 2.6 kW.

e In 2022, Australian company BrainChip announced that it was taking orders for
Akida Al processor PCle boards, making it the world’s first commercially available,
off-the-shelf neuromorphic processor.

* In 2023, IBM released NorthPole — a chip that was inspired by the brain and
negated the Von Neumann bottleneck, yet was designed to run conventional
deep learning workloads, claiming 25 times improvement in energy efficiency of
inference.

¢ In 2025, SpiNNcloud — the company that emerged from the development of
SpiNNaker — announced a chip called SpiNNext. One of the first deployments
is at Leipzig University (Germany), where it will be used to simulate 10.5 billion
neurons. SpiNNcloud claimed that in some applications its architecture is 78 times
more efficient in terms of tokens per watt than contemporary GPUs.

¢ In 2025, the China Brain Project launched Darwin Monkey, a neuromorphic system
powered by the homegrown Darwin 3 chips. It comprised a billion neurons
and 100 billion synapses (roughly equivalent to the brain of a macaque) while
consuming 2 kW. Demonstrations have included running DeepSeek models.

There are separate efforts to adopt the technology for low-power, on-device
applications, including:
e BrainScaleS-2, developed at the Heidelberg University in Germany, features 512
neurons, around 130,000 synapses, and consumes 1 W of power. Chips have been
available to researchers using remote access since 2022.

¢ In 2025, Dutch firm Innatera launched Pulsar, calling it the world'’s first
commercially available neuromorphic microcontroller. The chip can process
sensor data and run basic pattern recognition models at a power budget
measured in microwatts.

Economics

In 2025, much of the focus of neuromorphic research has shifted from discovering
new compute paradigms to developing hardware platforms that can radically improve
performance and decrease power consumption of existing deep learning-based Al
applications, especially inference workloads.

Hybrid servers equipped with both traditional and neuromorphic processors could
make today’'s Al models faster, cheaper and easier to deploy, before eventually
replacing them with hative” neuromorphic models. The likely initial use cases include
speech and image recognition, natural language processing and brain-machine
interfaces.

Separately, neuromorphic chips are being considered for edge processing and robotics

applications, bringing advanced Al functionality directly to devices and reducing the
need for cloud services.



All neuromorphic chips are currently used for prototyping and demonstration, with
commercial applications years, or possibly decades, away. Yet, if some of the early
claims are verified, neuromorphic computing could contest a sizeable (>20%) chunk of
the compute segment of the semiconductor market, estimated at $800 billion for 2025.

Commercial activity

Much of the funding for neuromorphic research comes from the public sector and is
focused on universities. Some of the programs started in academia have resulted in
ambitious commercialization efforts — the most notable being the Technical University
of Dresden’s SpiNNcloud and Zhejiang University’'s Zhejiang Lab.

These academic institutions are competing against the research organizations of

giants Intel and IBM, but neither appears excited about the prospects of neuromorphic
computing. IBM tests show that NorthPole, a prototype chip made using vintage 12
nanometer fabrication processes, delivered much lower latency and higher efficiency in
small language model inference than Nvidia's H100. IBM has demonstrated a 2U server
that contains four of these, and yet there are no plans to commercialize the system.

The dangers of being too early to the market were illustrated in 2025 by the failure

of San Francisco-based Rain Al, a neuromorphic hardware startup backed by Sam
Altman. Altman invested $25 million in a seed round in 2022, and OpenAl committed to
buying $51 million worth of hardware. However, the hardware never materialized, as
the startup failed to secure the $150 million it required to continue development. It is
now exploring a sale.

Drivers and barriers

Renewed interest in neuromorphic computing comes at a time when the power
consumption of existing approaches to Al is becoming increasingly problematic. A
more efficient alternative would be welcomed by broad swaths of the industry, from
small-scale data center developers to grid operators, policymakers and the public.

If demonstrated to be superior, the technology poses a risk to investment
commitments in conventional Al infrastructure. However, the commercial success of
neuromorphic computing appears remote and uncertain.

To take full advantage of a new architecture, researchers will need to reinvent or
redevelop existing Al capabilities, for example, teaching spiking neural network (SNN)-
based models how to recognize handwriting or speech while not relying on today’s
artificial neural networks. New programming languages and software will be needed
to operate neuromorphic hardware, and a sufficient pool of developers would need to
be trained in their use.

The possibility of building systems with more neurons and synapses also depends

on advances in nanotechnologies and materials science. Traditional computing
architectures keep evolving rapidly to increase compute and data parallelism for Al
training and inference workloads while suppressing power use, making heuromorphic
advantage” a fast-moving target.

Presently, the neuromorphic hardware and software market is diverse, with no clear
leaders that could produce a framework that the rest of the growing industry segment
could follow.

At the same time, examples show that neuromorphic systems are scaling very quickly:
from millions of neurons a decade ago to billions of neurons today. Connecting these

is relatively straightforward, and soon, researchers will be able to build machines that
have as many neurons as the human cerebral cortex. It will be the software component
that decides whether neuromorphic computing becomes a competitive alternative to
the machine learning platforms of today.



The Uptime Intelligence View

Much like the commercial challenge facing quantum computing systems, neuromorphic
systems are available but limited to small user bases in universities or industrial
research groups. Similarly, there is currently no compelling demonstration of a high-
volume application where neuromorphic hardware outperforms the alternative.

To take the next step in development, researchers must demonstrate a heuromorphic
advantage” in performance and power over conventional GPUs. Such applications
appear to be close, and indeed, several vendors already claim performance and
efficiency leadership in a narrow and carefully constructed set of tasks.

Funding neuromorphic research carries little risk and could have transformative effects
on many sectors. In the most optimistic commercialization scenario, this technology will
change how most organizations approach IT —in a transition that will take many years.
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